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Chapter 1

The Discrete Hopfield Model

1.1 Introduction to the Model

In 1982, Hopfield [1] proposed a neural model of memory storage and re-
trieval based on the theory of spin glasses in solid state physics . In the
model, neurons are binary-valued threshold units, taking either the value
0 or I in one version, or 1 or -1 in an alternative version. This digital
restriction of the neurons represents the neuron in two possible states-a
1 represents a neuron that is firing, while a 0 or a -1 , a neuron that is
inactive. Mathematically, this corresponds to replacing the experimentally
observed neuronal input-output relationship, a graded response which can
be characterized by a sigmoid function, with a step-function. The neurons
form a single layer and are completely interconnected, with the strength
of these connections, or "synapses", given by a correlation matrix formed
from the memory states to be stored in the system.

in= '(1.1) "

Once the layer of neurons is given an input, that is, when the neurons
are set to some initial configuration of values, the neurons are updated
asynchronously and in a random order. The updating procedure, which is
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given by: 1 N

14 ( i j (1.2)
j=1
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amounts to a relaxation process. 2 This follows from the fact that the
updating procedure minimizes an associated energy functional, or Liapunov
Function. The energy function which is minimized during the relaxation
process is:

2..

That is a Liapunov function may be demonstrated as follows.[1] Note
that: N

-A witjZwj)p (1.4)
j=1

Also observe that

A ILi <o 0 W12j I < 0 <A <0

-0 ~-A 0

Thus:
AC 0, and A=0if f Api=0 (1.6)

When this observation is combined with the fact that r is a bounded func-
tion, the proof that the relaxtion process will descend to a local minimum
is complete.

The aim of the Hopfleld model is the categorization of an input state
according to the stored state to which it is most similar. Given that, if
the Ilopfield model functioned ideally, the stored states should be the only
minima of the relaxation process and should divide the space so that their

'Henceforth, we will simply write the function 0(arg.) to represent 20(arg.) - 1 when
we are dealing with neurons whose values are (+/-)l, and it will be understood to mean
the standard Heaviside function when the neurons have the value 0 or 1.

'The original model had spins 0 and 1 and no self-connect ions, but experimental ev-
idence suggests that a system with spins (+i/-)l works better [11 and that addinig the
self-connections improves the performance still more.[71

3
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radii of attraction draw the input state to the stored state which it most
resembles.

In its original form, the standard Hopfield model, as we have described
it above, functions very poorly as a categorizer when (m/N) > 0.1. In his
1982 paper, for instance, Hopfield [1] found that when (m/N)stackrel-<
.05 to 0.1, the stored states can all be perfectly recalled when presented
as input states, that is, they are fixed points, or minima, of the relaxation
process. The radius of attraction is also reasonable in this range of (m/N).
To be concrete, Hopfield found for (m/N) = 0.05 with N = 30, 90 percent of
the random starting states within a radius of 5 hamming units of the stored
states relaxed to the target stored state. When (m/N) is above the range
0.05 to 0.1, the attractive capability of the stored states decays rapidly, and
the percentage of stored states which are minima also quickly declines. For
instance, as a benchmark, at (m/N) = 0.15, Hopfield found only half of the
stored states were fixed points.

1.2 Methods to Improve the Performance of
Hopfield's Model

1.2.1 "Unlearning"

Given the limitations of the original model, improvements have been sought.
An early approach first tried by Hopfield [2] has been given by him the name
of "unlearning", after a term first coined by Crick to explain the biological
purpose of sleep in humans and animals as a period during which unneeded
information is erased and stored information compacted. In Hopfield's al-
gorithm, a random state is relaxed to a stable state (often a spurious attrac-
tor), a correlation matrix is formed from this state, and then an ammount
proportional to this is subtracted from the original matrix:

tvj _ aj.Jtelazed grelazed(17wi -ij j -- (1.7)

The operation is repeated k times. In simulations of Hopfield's "unlearn-
ing", Terry Potter [7] has found that k is optimal for:

2 (1.8)

2 = the number of stored states. N = the number of neurons.
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With "unlearning" the number of stored states that can be correctly re-
called approaches the dimensionality, N, and error correction is improved
but falls to zero as m --* N.[7]

1.2.2 An Alternative Approach to Improvement of
the Hopfield Model

Recently, an interesting variation of Hopfield's "unlearning" has been stud-
ied experimentally by Terry Potter.J7] The algorithm is a hybrid combining
elements of Hopfield's "unlearning" with a modification reminiscent of the
Widrow-Hoff algorithm from Linear Filter Theory. As a quick review, we
present the rudiments of the Widrow-Hoff algorithm and then examine
which elements of it have been carried over into Potter's algorithm.

The goal of the traditional Widrow-Hoff algorithm is to associate pairs
of real-valued input, P, with real-valued output, 0. A linear input-output
function, represented by a matrix A, is postulated. The algorithm converges
to an optimal matrix A* by minimizing the mean-square error between the
target state and the actual output of the matrix A. For a proof of this, see
T. Kohonen(1974).[6] In practice, the derivative of the partial error due to
the kth pattern:

ak
A = - 2(yi - (A ))x- (1)

is used as an approximation to the derivative of the total error in a gradient
descent algorithm, which has the form:

aEkAij -- Aij - ct - i (1.10) .

The patterns are presented successively, and a modification is made at each
step. The motivation for such an algorithm can be depicted graphically:
The graph displays the error E' versus the matrix element A,.; the algo-
rithm chooses at each step a better approximation to the global minimum
by generating a matrix A which is a better approximation to the minimum
of E'. In the limit as the number of presentations increases, the algorithm
approaches the global minimum asymptotically, provided that a is chosen
sufficiently small [6].

Having described the original Widrow-Hoff algorithm, let us now ex-
amine how this has been woven, along with Ilopfield's "unlearning", into

5%
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a hybrid algorithm by Potter. There are actually two versions of the al-
gorithm. In one version, following a suggestion by Professor Cooper, the
stored states are used as the input states in the relaxation process; for a
given stored state, modification is done only if that state is unstable. In a
second version of the algorithm, all of the states at a radius of one hamming
unit from each stored state are relaxed; a modification is made if the target
state misses its target stored state.

The similarity of Potter's algorithm to that of Widrow and Hoff lies in
the actual form of the modification used once a state, elected as described
above, is relaxed:

,,(,,target 1reazed.input(, input
wi" -+ wo" - S z - Hi ) / + 1 11)"

By analogy with the original Widrow-Hoff equation, 1.10, the result of the
entire relaxation process Ite'azcd now replaces the output of Widrow-Hoff's
linear input-output function, (Ak)i. One should note, however, that the
form is not exactly the same as the original Widrow-Hoff because of the
presence of the factor jg+l. This additional factor and the symmetry of the
modification in the indices i and j establishes an additional restriction on
the modification criteria mentioned above: no modification will be made to
wij (and wi) unless either one or both of the ith and jth elements of the input
state has the value one. Potter has found that this additional proviso is an
important factor in the effectiveness of his algorithm. There is one more
essential difference and that is that the symmetry of the synaptic matrix is
preserved by making the same modification to wji each time a modification
is performed on the element wij. This ensures that the relaxation algorithm
will continue to descend monotonically: in order to avoid the possibility of
limit cycles, the symmetry of the matrix must be preserved. [I]

As an overview of the algorithm, then, the relaxation process as a whole
has been embedded in place of the output of the linear operator in the
original Widrow-Hoff theory, the overall morphology of the modification
has been modified slightly, and additionally, symmetric modifications have
been added.

In simulations carried out by Potter [7] using the stored states as the
input for the modification, he was able to achieve -- N' stable stored states
(fixed points). At this density of stored states, the radius of attraction,

3 a greater number of states was not attempted

7
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however, can not be completely gauranteed for even a radius of one harn- ..

ming unit: at a radius even so small as this, the percentage of states which
converge to the target stored state is -- 40 to 60 percent. 3

For simulations in which Potter used all of the input states at a radius
of one unit from each of the stored states, he found that for m just below
the dimensionality, N , a radius of attraction of one unit hamming unit
could be completely gauranteed. Above the dimensionality, the radius of
attraction and the percentage of stable stored states decays.

In summary, then, with Potter's algorithm, the capacity of the tHop-
field model to generate stable stored states can be vastly improved, but
with no radius of attraction. Conversely, with the alternative version of his
algorithm, confining the capacity of stored states to be just below the di-
mensionality, only a severely limited radius of attraction c in be constructed
around the stored states.

1.3 Some Analysis of the Hopfield Model
and Potter's Algorithm

To begin with, we note that in the standard tIopfield model, N stable stored
states could have been achieved if the coding of the stored states had been
selected so that all of the stored states were mutually ortho.onal. The proof
is as follows. Suppose we choose m mutually orthogonal stored states. Label
them by the index s:1- .m < N. Now, examine what happens when the
relaxation process is applied to one of the stored states s':

N

j=1

= o( . 9"))
s=1

~O(Nit'
= /' (1.12)

Thus, no matter which neuron is sampled by the updating procedure, it
returns the same value for the neuron. Thus, all of the stored states are

3provided the self-connections are used; if the self-connections are removed when the
synapses are formed, the performance at this radius is even worse.17]

8
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stable.
Professor Cooper has pointed out that even in a linear system, we should

expect this result. The argument is as follows. Suppose, in such a system
we choose:

wj-- (1.13)
a11

where the vectors p', s : 1 .. m < N, are mutually orthogonal. Such a
set can always be generated from a linearly independent set of states via
a Gram-Schmidt process. We can rewrite the matrix wij in terms of an
orthonormal set of vectors i8 as:

-i XX (1.14)
8'1w,; z i  (!j),:

If the state i" is now presented, then the output is:

N M at"

j~l 'R=I ..

8=1

X!,'- (1.15) ,:

and the stored state is perfectly recalled.
Let us now return to our analysis of the Hopfield model and examine

the relaxation process when the states are not orthogonal. Given this, if
we relax one of the stored states, we find in the first iteration, or in any
iteration prior to which no neuron has changed its value:

1'' -

j= 1
m N

8=1 j=1

?ifl

-"M)

0 (E i g

9 
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- o( Nj., + Z .,(., 8.. f7j') ) (1.16)

T7 a'

Note that if the second term in the argument, , 8(jl' IV'), is larger in
magnitude than NI!' and of opposite sign, then the spin will be flipped and
the stored state s' will be unstable. This second term, arising from state to
state interaction, thus, can be viewed as "noise", which competes with the
"signal", NA!'. It is this "noise" which causes the standard Hopfield model
to function so poorly. As a very crude estimate of this "noise" term, note
that:

m

I Zi ,,(i ° • p7')I
<- (m - 1)N. (1.17)

As an example, with m = .1N and N = 100, this bound is 9N. Given this,
it is easy to see how random fluctations in the selection of the stored states
initially could easily generate a "noise" term large enough to swamp the
"signal."

It is logical to ask how the above analysis effects error correction. We
are led to consider, therefore, the relaxation process for a more general
state, that is, for one of the stored states with some error:

Here, f' is the target state and F is the error in the state at some point
during the relaxation process. With this definition, if the ith neuron is the
next neuron selected by the updating procedure, then, we have:

N

j=1

N m= ( Po. t , (a + ej)
j=1 s=l

SN + +(1.19)

The situation is more complicated than before because there are now two
"noise" terms:

71-1r/ + 71 , -+i
10
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'ii = - I( ," as'),

172 = A! . (1.20)

171 is just the state-state interaction due to the non-orthogonality of the
states, as previously discussed. 712 is the interaction of the error vector
with all of the states. This more complicated "noise" term competes with
the "signal" and is responsible for the poor error-correction ability of the
standard Hopfield model.

In light of the above analysis, we now want to examine how Potter's
modification algorithm helps to improve the standard Hopfield model and
point out some of the reasons for its limitations. We consider the version of
Potter's algorithm which tests the stored states. To begin with, we demon-
strate the effect of a single modification and then discusss the consequences
when multiple modifications are effected.

A single modification due to the relaxation of the stored state s' will
yield:

wi '  w.= wi + aQ(A' - )(i + 1) (1.21)

Now, let us see th, effect on the relaxation of a-" with the matrix w*,. We
examine a step in the relaxation process before any neuron has changed
its value and find that, now, if the ith neuron is sampled, the updating
procedure will give: A'

N

N

=- O( N, + Y7 + E a(p" - A '") , (p;' + 1)p;' ). (1.22)
j= 1

If we use the fact that 4 1, then this reduces to:

N

A 0 Ny!' + r7({fi'}) + (N +4 )a(ts -,2)") ). (1.23)
j=1

If the states are stored with a random but balanced code, 4 5 then the term

4 A balanced code is one with an equal number of l's and -l's, or O's (if the "of" state
is represented by a 0).

5 Experimentaily, a random, balanced code performs 3 to 4 times better than a random

11 '
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E j=1 = 0. We assume this is true and observe the relationship between

the "signal" term, Nit!, the "noise" term, 7({fa°}), and the modification
term, Na(14' -. p"). Note that if .4' = .!, then the modification term
is identically zero, which is the desired result, since this corresponds to the

situation in which the "signal" was stronger than the "noise". If > !-
then .' = 1 and it! -1 =. y({fa}) > 0 > N., and further: I N14' 1<1

-7 1, but Na('- ) < 0, so that provided a is chosen large enough,
i.e. a > > n-!,Y. If !% > , the same result will obtain provided a is

again chosen larger than the same limit. This follows from the fact that
Na(p4' - i.i) has to have the same sign as the "signal" term and the
opposite sign to that of the "noise" term, so that provided a is sufficiently
large, i.e. above the stated limit, the ith neuron will be stable. We can
gaurantee that the whole state will be stable if we chose:

I N - 17 1.1
a > Nmini 1i4 -, (1.24)

Ile

The limitations of this approach lie in the fact that modifications which L

aid in the stability of one stored state may hinder the stability of other
stored states. Clearly, the fact that out to N 2 stable stored states have
already been achieved with this algorithm attests to the fact that despite ..

this competition of modifications, there is an overall averaging effect which
achieves a substantial increase in the capacity to store stable memory states.

We have outlined this argument in terms of a "signal", which is the
only term present for orthogonal memory states, a "noise", which is due to %

the lack of orthogonality, and a modification term. What the modification .'

term achieves, then, is an effective orthogonaliztion of the states with re- ..

spect to the non-linear updating procedure, by eliminating the effect of the IS
noise. In a linear system, as pointed out earlier, we could create up to N
perfectly recallable stored states. Because the updating procedure in the
Hopfield model is nonlinear, an effective orthogonalization with respect to
that nonlinearity can achieve well above the dimensionality.

As we have discussed earlier, however, error corresction is non-existent
at ,- N 2 . When states with error are input, r7({j!s}) -77 ({f S}, , and the
error term is apparently then so large for a number of the neurons that the
effect of the modifications is inconsequential.

but unbalanced code

12
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The same analysis applies if the second version of Potter's algorithm
is used-that of probing all of the states one Hamming unit away from the
stored states, except that in the modification term, X1' and )7-' should
now be thought of as the probe states and their respective relaxed states.
A radius of attraction of one Hamming unit could be gauranteed for m
just below the dimensionality, but no better. Again, it is the combination
of the size of the "noise" term and the competition between the various
modifications which causes such limitations to arise.

To provide an alternative perspective on the Potter algorithm, we con-
sider it from the point of view of the energy functional. The energy of a
state 11 is given by the quadratic form in 1.3. Suppose we use the version of
Potter's algorithm in which the modifications are based on the relaxation
of the stored states. Denote the energy of a1 before the modifications by V. ,
Then, after the modification procedure, we have:

M Ne
) - u, + ")~

(" -2) + W , (1.25)

using the fact that ( 1. We will assume a balanced code for the
stored states. Let us consider the energy of one of the stored states, s', and
then examine the region of the hypercube nearby the state s'. For )y = ,
the energy equation 1.25 reduces to:

CA = C ,- ,((fi". 98) -(" W -' a )( u. ), (1.26) .-.

(where we have assumed a balanced code). Consider the factor (11i" .1V). It
will obviously be largest for s=s'. The prefactor of this term is N (g8' .1 TD)

which is > 0 and is zero iff the state s' was stable before the modifications.
Thus, if s' was unstable before the modification, this modification term
will lower the energy of the state s'. This is depicted graphically here:
Terms in the sum due to nearby stored states may in fact reverse this
process, particularly if their density is high (perhaps m > N'). This is
possible because fio for these nearby stored states will have a probability
of being closer to fi8 than i1' is; when this situation arises, the prefactor

13
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Figure 1.4: The presence of nearby states can generate modification
terms which tend to raise the energy of state s' as described in the text:
dashed line

.

p

15o



I'

- ( 7i"1.) will be negative. This is depicted graphically for i" and %

one of its neighboring states )T': It is these competing nearby states which *1"

provide some upper bound > N2 on the number of stable stored states
obtainable, because if there are too many nearby neighbors, the algorithm
can't lower the energy of the stored state. We caution, however, that this
energy perspective has some limitations: the presence of a gap in the energy
is only a neccesary and not a sufficient condition for the system to descend .
through that gap: the reason for this lies in the discrete nature of the
jumps; the system can get caught.6  .

The energy perspective if i is not one of the stored states but rather
nearby one of the stored states is more complicated. This stems from both
the competition of modification terms due to nearby states and from also
from the fact that the largest term in the sum may now have the wrong
sign: g7 may now be closer to X7',' than /!'. In addition, modification terms
due to other states targeting the same stored state may have the wrong
sign for the same reason. As a consequence, we would expect the ability of
Potter's algorithm to improve error-correction in the Hopfield model to be
quite limited, and, indeed, as pointed out earlier, this is exactly what he
has observed experimentally.

1.4 Some Alternative Energy Functions

Among possible methods of improving the Hopfield model, the embedding
of different energy(Liapunov) functions via the updating procedure poses a
promising alternative to iterative modifications procedures, like "unlearn-
ing" or Potter's algorithm, which aim at simply optimizing the matrix in
the quadratic form of equationl.3. Among the options that we have con-
sidered is the possibility of adding a cubic term to the energy function, so
that g would take the form:

-- - . Z, PiZjkqijk (1.27)ij 3!i,j .' .

'For this reason, one should not be misled by the fact that in the above schematic
diagrams, we have drawn continuou, lines connecting the states.

7 The claim can be demonstrated by working through some simple three-dimensional V.

examples of the Itopfield model. See the three-dimensional examples in the Appendix
section of this report.

16
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with wij I and qjik I'

By choosing the associated updating procedure to be of the form:

N1

( wii/tj + - Z: qijkIltj/k), (1.28)

the algorithm is gauranteed to descend monotonically. The definition of qijk %

is chosen to be analogous to that of wi.: it corresponds to a measure of the
correlation between all triples of neuronal values kti, ji, and il in the stored
states s : 1 ... m. While this modified energy function, may prove to work
better than the original model, the amount of additional computational
complexity involved in the relaxation process may not be worth the gain.
Further, modifying the quadratic and cubic tensors also requires a quite
significantly longer amount of time if the updating procedure is involved in
the optimization. Finally, there is some question as to whether the form
of the cubic order coupling constant is really the best form. The question
is raised because of the fact that if the ith, jth, and kth neurons all have
the value -1 in a given state then their product is, of course, negative: this
contradicts the notion of correlation as Potter has pointed out.8

Another alternative, which has proved to be very promising in some
preliminary investigations in three dimensions, 9 is the following energy
functional:

2 D-i. 98,)( (1t 1) + at E gi., )(1.29)
8=1d

The first term is the original Ilopfield term; the second term contributes
most when nearby states are close. This can be rewritten as:

1 .

Sw, + ),(1.30)

where:

Qij E Z14 E'4j,)")(1.31)
8=1 s-l ."j, s

'T. Potter, personal communication
9 See the three-dimensional examples in the Appendix

17
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A descent algorithm can be gauranteed if we choose:

N

I "- ( Wil -t -Q .(1.32)
3=1 2

This ammounts to a special recipe for choosing biases, since:

N

= _ Qq (1.33)
2 y=l

is just an offset. Hopfield[1] employed a special choice of biases in his

original model with spin values 0 and 1 and found that it made the model,.1
perform as well as when the model was run with spins ±1, and no offset;

no formula for the choice of biases was given in his article, however. We

are suggesting that a special choice of biases for spins (+/-)l could improve

matters even more, 10 and are proposing the above form as an appropriate

means of making this choice. In the three-dimensional examples whicl we

have worked in the Appendix, we found that a must be chosen as a function
of the stored states: 11 12

ce f a-, -,'I(1.34)

V,:

"'For tJt pw;,cular examples worked in three dimensions with two A4ored staLes,

and )V, we found that a = 5( -1.
1 2The explicit form has yet to be derived, but our explorations in three dimensions in

the AppendiLx sagest that a good cboice should probably be a lnnttioa d how close the %

nearest neighborrs are. For this reason we h'axe chosen the furm above.
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Chapter 2

The Analog Hopfield Model,
and Future Directions with

Continuum Models

a.

2.1 The Analog Hopfield Model

In subsequent articles following the appearance of Hopfield's 1982 arti-
cle, Hopfield has developed the idea of a continuous version of his original
model. [5][ , ] In this analog version, Hopfield defines ui to be the
input to )he ith neuron and Vi = g(u,) to be the output (g(ui) is a sigmoid)
of the ith neuron. The analog version is composed of an R-C network con-
structed from standard op-amp's, ,J] the dynamics of which are governed
by:

C (dui ui 
",1

wVjVj + I, (2.1)

(here, I is an external current, which is just an offset). As in the digital
version of the model, the system descends monotonically to a minimum of

19
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an associated Liapunov function: I

wiy/i +
2 i,

~-~g~1 (V)dV - I LV (2.2)
E( i.

Comparing the performance of the analog version of the model with that
of the digital version, Potter [7] has found that the analog model functions
better than the digital model in its ability to store stable stored states and
do error correction. Likewise, Hopfield t'57 has found that his analog
model arrives at vastly better solutions of the travelhng salesman problem.
Still, there is room for much improvement.

.5.

-'.

-. i

- .

'For a proof, see [ 1.
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2.2 Alternative Analog Equations

Given the limitations of the Hopfield model, both analog and digital, we
have begun exploring the problem of stable stored states and error-correction
in a more general way at the suggestion of Professor Cooper. As a starting
place, we began by studying equations of the form:2

du-

du = -V,,F(u; {u-'}) (2.3)
dt

Yn°

with F (U; {U,} 11 J7(u -. (2.4)

5=1 1

In the simplest situation, in one dimension, with one stored state, we
have:

du '

- - =2(u - '). (2.5)
dt

The solution is easily found:

u 1 + (U(O) _ ul)e-2 t(26

$1

with lime.,,,u(t) =t'. (2.7)

There is only one fixed point, the stored state, and it is stable. Furthermore,
every state not beginning at it1 converges to it asymptotically.

For two stored states in one dimension, the equation of motion
is:

1 "2

du
-2(u u')((u - u2)- 2 (2.8)

The fixed points of the system are (U st t and (tertLoe,2
)

Again as desired, only the stored states themselves are stable fixed points,
and they are the only attractors, partitioning the space evenly. For one-
dimension, with three or more stored states, the original form of F leads
to an equation of motion with a non-uniform partitioning of the region of
attraction of the stored states. For example, with thice stored states, we
have:

- 2uI'(u- u l (u1- ui) (U - u j )  (2.9)

dt 2

2 This form was suggested by Amir Dembo and Ofer Zeitouni, Visiting Assistant Pro-
fessors(Res.), in Applied Mathernatics, Brown University.
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Figu re 2.1: Phase diagram for one stored state in one dimension. -
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Figure 2.2: Phase diagram for two stored states in one dimension.

The unequal partitioning comes from the last factor involving the Ej-j,,
which is an interference term due to the "interaction" of the stored states.

This observation led us to modify the original form of F, or more impor-
tantly VF, so that the domain of attraction would be evenly partitioned
among the stored states, while at the same time, so that the stored states
would remain the only stable fixed points and attractors in the system.
The beauty of the result we have obtained below is that its properties are
independent of the number, density, or distribution of the stored states.
The form of VF satisfying the above requirements is:

1 2 ('k .4um

VF =(u - u'1 )... (U - U)(U - U Uml
2  ( 2 (2.10)

so that the equation of motion becomes:
duA
du- VF = . . ...)... ( . (2.11)
dt 2 2

The phase diagram for this is:
If we now consider the problem in higher dimensions, we observe that if

we take the coordinates to be independent of one another we can generate

23
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Figure 2.3: Phase diagram in one dimension for a modified VF; all
of the sytems properties are maintained regardless of the number, density,
or distribution of the stored states.
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a hyper-grid of stored states which are the only stable fixed points and
attractors, and which partition the hypersphere into hyperrectangles of
attraction, by simply adding the coordinate index as a subscript in equation
2.11.

W.
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f~n X

Three Dimensional Examples Comparing the Digital Hopfield Model
with Various Algorithms to Improve It

In this appendix, we discuss three examples of the Hopfield model in
three dimensions. In the first three figures, we show how the standard
Hopfield model functions in each of the three examples. Examples 2 and 3 -"

are then revisited with after Potter's modification has been applied to the
synaptic matrix. Finally, examples 2 and 3 are studied after the standard
Hopfield model has been modified by choosing biases according to the recipe
that we specified in chapter 2, and the results are contrasted with those of
Potter's algorithm and the standard model.
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Figre 1(fig a.1)The standard Hol~ield model when the states are well
separated. Energies are in parenthesis;arrows indicate flows. The situation

is ideal. "
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Figure .2(fig a.2 tates closer togeth~r in the Standard Hopfield. Spurious
attractors and ffed points appear; flows are no longer ideal. There is
~noise" due to state-state interaction and state-error interaction. Al)
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Figure .3( fig a.3)Standard Hopfield model. The states are placed even
4

closer together. Spurious attractors and fixed points. Note also, as in the
previous figure, merely the presence of an energy gap is not enough to cause
a flow (see point F in this figure and points D and E in the previous figure).
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Figure .4(fig a.4)Ex. 2 revisited witl Potter's algorithm. Improvements: 4
flows of nearest neighbors, instead ofjust 2, are correct. Spurious attractors
and fixed points still persist.
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